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A technique to generate multidimensional random hypersurfaces with given statistical 
properties numerically on a digital computer is discussed in this paper. The technique 
is based on the linear filter theory. Using this technique, two-dimensional random 
surfaces are generated to illustrate the procedure. 

Statistics of these two-dimensional random surfaces are presented. Possible applica- 
tions of these random surfaces in various physical problems are discussed. 

1. INTRODUCTION 

The study of multidimensional random functions is of importance both in 
theory and in practice. It is a study of interest not only in mathematics, but also in 
applications of a wide range of physical problems. To name a few examples, we 
have light scattering from ocean surfaces [I], wave propagation in turbulent 
media [2], heating and diffusion in velocity space of plasmas in stochastic fields 
[3], planetary motions in random gravitational fields [4], and random light rays 
[5]. In most of these problems, analytic computations usually do not go very far. 
It is then necessary to resort to some type of Monte Carlo calculations in an 
attempt to simulate the physical situation. The solution to one class of such 
problems can be approached by first generating random hypersurfaces with 
prescribed statistical properties. For example, the study of random light rays can 
be carried out by first generating random refractive index surfaces and then tracing 
rays in them to obtain statistical properties. Other examples given above can be 
done similarly or with some variations. 

Many techniques are available to generate independent random numbers 
distributed uniformly over an interval. To obtain random surfaces with pre- 
scribed correlations digitally, we need to assemble these numbers and pass them 
through a filter in a proper manner. The filter must have the desired characteristics 
so that its output has the desired statistical properties. The paper starts in Section 2 
with a quick review of the filtering theory which is then followed by descriptions 
of a procedure by which the filter can be synthesized. As a concrete example, two- 
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dimensional random surfaces with a prescribed correlation function are generated 
in Section 3. Statistical properties of the generated random surfaces are investigated 
in Section 4. 

2. GENERATION OF RANDOM F~SCTIONS 

Let us consider a noncausal, linear, and shift-invariant N-dimensional filter. Let 
P and Q be points in the N-dimensional space. The input X(P) and the output Y(Q) 
of the filter are related through the impulse response h(P, Q) x h(Q - P) by the 
convolution integral. When the input X(P) is a real homogeneous random process 
with correlation function RXX(Pl -- PZ) and spectral density function S,,(k), the 
output Y(Q) must also be a real homogeneous random process. Let the output 
correlation function and spectral density function be, respectively, RYY(Q1 -- Q& 
and S,,(k). Then the output is related to input by 

&,W = ~x,dk), W)‘“, (11 

where H(k) is the Fourier transform of the impulse response h. In the following we 
will call h the correlator function for obvious reasons. Equation (1) is just the well- 
known relation in filtering theory and system analysis. We will use it to synthesize 
the filter so that when a known input process is fed into the filter, the output process 
has the desired correlation function. To do this digitally on a computer requires us 
to extend the analysis to the discrete case. The input at the grid point 
P -= (A 11% ,..., ph.) can be written as 

where B is the input process with known distribution and correlation. Because of 
the presence of Kronecker delta function Si, , the input (2) takes the value of B at 
the discrete mesh points at which i -7 p. The output of the discrete system is then 
given by 

2 s 72 
Y(q) --T C C 1.. C X(j) Iz(q --- j), 

j,= 3u j,; --1: jN. .I 

where q --- j = (cl1 - j, ) qZ - j, ,..., qh, - ,iN). 
Substituting (2) into (3), we obtain 

Y(q) = f f ... f E(i) h(q - i). 
j,‘. zc iz=-e i,v=-- -I. 

(3) 

(4) 
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The correlation coefficient for the output in the discrete system can be obtained 
from (4) to give 

&&) = T 1 R&i - j> C-i) A*(5 - 8, (5) 
i 

where the Ci stands for multiple summation for all values of i = (il , iz ,..,, iN) and 
similarly for xi . The input correlation coefficient in (5) is 

&A - j> = <B(i) B(j)). (6) 

For the special case for which X(p)‘s are independent random variables, (5) 
reduces to 

h&J = (@> C h(i) 4% - 9, (7) 
1 

where (B2) is now a constant. 
For a prescribed R&Q, (7) may be used to solve for the correlator function h 

and then (3) used to find the required output Y(q). In practice, however, the number 
of random variables that can be generated on a digital computer is limited, the 
summation in (3) and (7) have to be truncated. Let the truncation be confined to 
the N-dimensional square with 2L on each side. Then (3) and (7) become, respec- 
tively, 

s+L 

Y(q) = C B(i) Nq - 9, 
i=q-L 

and 

Ry&) = (B2) 5 h(L - i) h(L + 5 - i). (9) 
i=O 

To solve for h by using (9) is an inversion problem. In practice, however, even for 
the two-dimensional case with moderate values of L(L, = L, = *a. = 5, for 
instance), (9) represents a set of 121 simultaneous quadratic equations. For general 
N-dimensional hypersurfaces, the number of quadratic equations is given by 
(2L + 1)“. The fact that the equations are quadratic makes the inversion problem 
rather time consuming on a computer. Therefore, instead of using (8) and (9) 
directly, we have adopted a mixed continuum-discrete procedure in our computa- 
tions. This hybrid procedure begins with the given output correlation function 
from which H(k) and, consequently, h(P) can be found by using (1). The continuous 
correlator function is then evaluated at the discrete points in a manner given by 
(8) to yield the output Y(q) at each discrete grid point. 

In the following section a two-dimensional example is given to show the details 
of this procedure. 
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3. RANDOM SURFACES 

As an example for the application of the procedure described in the last section, 
WC now generate two-dimensional random surfaces with the prescribed correlation 
function given by 

&47x, r2) = A [(T-,/fly 7 (T,if,)“] K,{[(r,i/,)” -I- (T2~f2)‘]‘;‘>, (10) 

where A is a normalization constant, K,(p) is the modified Bessel’s function of the 
second kind, and 1, , f, are proportional to the correlation lengths in the two 
orthogonal directions on the surface, say x and I?, respectively. The correlation 
function of the form of (10) is of interest in the study of wave propagation through 
atmospheric turbulence [2]. The corresponding power spectrum for (10) is 

S,,(k, , k,) = A,/{[1 -t (k,l,)” -I (/L,l,)?]“}. (11) 

Our procedure begins with the generation of independent, uniformly distributed 
random numbers using the multiplicative congruential method [6]. Figure 1 shows 
a histogram of 13225 uniformly distributed and independent random numbers 
(XJ generated on the interval (0: 1) by this method. Using the transformation 

Yl = (---2 In Xi)‘:’ cos 27rXiL1 , 

Yj. 1 .= (--2 In Xi)]:? sin 27iXT,., : 
(12) 

0 .75 50 5 i0 

X-VALUE 

FIG. 1. Histogram of 13225 uniformly distributed and independent random numbers 
generated on the interval (0, 1). 
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we obtain the same number of Gaussian-distributed independent random numbers 
(YJ. These numbers are then arbitrarily arranged in the form of a two-dimensional 
array and serve as the input to our correlator. Since the input signal consists of 
independent random numbers, the continuous correlator function may be found 
by using (1) and (11). The resulting correlator function is 

NTI , ~~1 = A2 ev~-K~l/W + (72/~2)211/2), 

where A, is a constant. 

(13) 

To apply this correlator function to the discrete case, we write 

h(i, , i,) = A, exp[-(a12i12 + 01~“i~~)~/“], (14) 

where 01~ and 01~ are parameters to be determined from the ratios of the distance 
between grid points to the correlation lengths. 

Substituting (14) into (8) and (9), we obtain for this two-dimensional random 
surface 

41+L q!j+L 

Y(q, , q2) = C C A,%, i2) ew-h - 4)” aI2 + k2 - i212 01~~1~~~) 
il=ql-L iz=qz-L 

(15) 
2L 2L 

&A&, t2> = A2 CB2> C C ewi--I& - 4)” 0~1~ + CL - i2>" ~~~1~~') 
i1=0 is=0 

. exp(-KL + fl - iA aI2 + (L + t2 - i2j2 a2211’2), 

(16) 

where B(i, , i2) are the array of Gaussian-distributed independent random numbers. 
Equation (15) gives the desired array of random numbers whose correlation 

function approximates the given correlation function (10). 
To determine 01~ and 01~ , we compare the continuous correlation function (10) 

with the discrete one (16). Let us take the distances between the grid points to be 
5, and l2 along the two orthogonal axis. Assume the correlation lengths are given 
by I1 = n,& and I2 = n25, , where n, and n2 are integers. 

In Fig. 2, cross-sectional plots of (10) are drawn as functions of 71 = p& 
(p, integers) for 72 = 0 at different values of n1 . On top of these plots, plots of (16) 
are also given for &z = 0 as a function of h = p& (p, integers) at different values 
of ol,. An eleven-by-eleven matrix is used to compute each point in (16), correspond- 
ing to L = 5. From these plots, we see that for a given value nl, we can choose 
a value (Ye such that the curve given by (16) approximates that given by (10). The 
actual fitting of the curves is done by a least-square computation. This way we can 
determine the parameter DL~ for a given correlation length. For isotropic surface, 
n1 = n2 , and 01~ = 01~ . For anisotropic surfaces, cross-sectional plots along 
r1 = 0 and f1 = 0 may be used to find the value of a2 for a given n2 . 



DISTANCE BETWEEN POINTS c,-‘- 

FIG. 2. Cross-sectional plots of Eq. (10) drawn as functions of r1 = pg (p, integers) for 
7z = 0 at different values of nl . Also, plots of Eq. (16) for t2 = 0 as functions of & = ~5~ 
(p, integers) at different values of 0~~. 
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FIG. 3. Correlation function contours computed for Eq. (16) for 01~ = cxs = 025 as compared 
with the contours of the continuous correlation function Eq. (10). 
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For the specific example of isotropic random surfaces we choose ~1~ = ylg = 3, 
corresponding to four grid points in one correlation length. The values of LX~ and 01~ 
are found to be 0.25. Using these values, the correlation contours computed from 
(16) are shown in Fig. 3 as compared with those of the continuous correlation 
function (10). We note that. they are close to each other. The correlated two- 
dimensional arrays are then computed by substituting clll = 01~ = 0.25 into (15). 
Six such spaces are generated for six different input arrays of independent random 
numbers. The statistical properties of these surfaces are discussed in the next 
section. 

The anisotropic random surfaces can be computed similarly by using unequal 
n1 and ~1~ . Four such surfaces have been computed by using ~1~ = 1 and IZ~ = 3. The 
corresponding values are ~1~ = 0.8 and 01~ = 0.15. 

These surfaces all have 105 grid points on each side. 

4. STATISTICS OF THE RANDOM SURFACES 

The distribution of the generated random numbers Y(q, , q2) is shown in the 
histogram of Fig. 4 for one of the spaces. Two chi-square tests are made on these 
numbers and show that the distribution is Gaussian with mean = 0 and variance 
= 1 (for 100 cells in the histogram, x2 = 108.5; for 48 cells in the histogram, 
x2 = 53.4). 

.45 

.4 

Y-VALUE 

FIG. 4. Distribution of the generated random numbers Y(q, , q2). 
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The correlation coefficients for the random surfaces are computed by the formula 

where N is the number of grid points on each side of the array. Figure 5 shows the 
computed correlation coeffkient contours for one of the isotropic random surfaces 
as compared with the contours of the continuous correlation function (IO). We 
note that the computed values are consistently less than those of the continuous 
correlation function. This feature was found in ail the other cases computed. The 
discrepancy may be attributed to the following two causes. First, instead of using 
(9j directly, we have adopted the hybrid procedure, this certainly is to affect the 
accuracy. Second, the truncation of the series in (8) and (9) also introduces error. 
Computations made on a smaller space indicate that when the value of L is in- 
creased in (8), the computed correlation contours fit the continuous contours 
better. It is of interest to note from Fig. 5 that the generated space is quite iso- 
tropic. A cross section of the correlation contours (Fig. 6) shows that it fits very 
well the continuous correlation function (10) with a correlation length about 415 
of the original one. 

---~-.- -- ...-.-.- 
-- .-___. ,-_.... -- ---.. __ 
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FIG. 5. The computed correlation coefficient contours for one of the isotropic random 
surfaces as compared with the contours of the continuous correlation function Eq. (IO). 
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In Fig. 7 a contour plot of one of the generated isotropic surfaces is shown. It 
may be used to simulate the two-dimensional random fluctuations of the refractive 
index of a certain medium, or to represent the random height variations of a rough 
terrain. 
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FIG. 6. Cross-sectional plot of the computed correlation coefficient as compared with the 
continuous correlation function Eq. (10) with correlation length 415 of the original one. 

FIG. 7. Contour plot of the generated isotropic surfaces. 
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5. Co~cLusrox 

In this paper we have presented a rather straightforward procedure to generate 
X-dimensional random functions with given correlation functions. The procedure 
is demonstrated through the generation of two-dimensional random surfaces. A 
typical 105 x 105 surface takes between 3 to 4 minutes of computing time of 
IBM 360/75. Adams and Denman [7] have used a similar procedure to generate 
one-dimensional random functions. Rusbridge [S] has used a different approach 
to generate 25 x 25 random surfaces in his study of scattering of microwaves by a 
turbulent plasma. 

Due to the possible errors caused by the hybrid procedure and the truncation 
in generating the space, the correlation length of the generated space is found to 
be consistently smaller than that of the original random function. This discrepancy 
may be significant in the computations for certain physical problems. Because of 
this, it is suggested that careful studies of the generated spaces such as those 
indicated on Figs. 5 and 6 should be carried out and the correct value of the correla- 
tion length be chosen before these spaces are used in the computation. 
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